Lesson 6-1

Simplify each radical expression.

1.
$$\sqrt{36x^4}$$

2.
$$\sqrt{c^{80}d^{50}}$$

3.
$$\sqrt[4]{81x^{12}}$$

6.
$$\sqrt[4]{\frac{1}{16}}w^{12}$$

7.
$$\sqrt[4]{m^{18}n^8}$$

8.
$$\sqrt[3]{27y^{15}}$$

9.
$$\sqrt[5]{-243r^{20}}$$

- **10.** You can use the expression $D = 1.2 \sqrt{h}$ to approximate the visibility range D, in miles, from a height of h feet above ground.
 - a. Estimate the visibility from a height of 900 feet.
 - b. How far above ground is an observer whose visibility range is 84 miles?
- 11. You can approximate the speed of a falling object as $v = 8\sqrt{d}$, where v is the speed in feet per second and d is the distance, in feet, the object has fallen. Express d in terms of v.

Lesson 6-2

Multiply or divide and simplify. Assume that all variables are positive.

12.
$$\sqrt{3x^4}$$
. $\sqrt{24x^3}$

14.
$$\sqrt{5a^3}.\sqrt{20a}$$

15.
$$\frac{\sqrt{80}}{\sqrt{5}}$$

16.
$$\frac{\sqrt{18x^5y}}{\sqrt{2x}}$$

17.
$$\frac{\sqrt[3]{640w^3z^8}}{\sqrt[3]{5wz^4}}$$

18. The time T it takes a pendulum to make a full swing in each direction and return to its original position is called the period of the pendulum. The equation $T = 2\pi \sqrt{\frac{\ell}{32}}$ relates the length of the pendulum ℓ , in feet, to its period T, in seconds. How long is a pendulum if its period is 3 seconds? Round the answer to the nearest tenth.

Lesson 6-3

Simplify.

19.
$$2\sqrt{7} + 3\sqrt{7}$$

20.
$$\sqrt{32} + \sqrt{8}$$

21.
$$\sqrt{7x} + \sqrt{28x}$$

22.
$$3\sqrt{18} + 2\sqrt{72}$$

23.
$$\sqrt{27} + \sqrt{48}$$

24.
$$8\sqrt{45} - 3\sqrt{80}$$

25.
$$(2+\sqrt{5})(3+\sqrt{5})$$
 26. $(6-\sqrt{7})(1-\sqrt{7})$

26.
$$(6-\sqrt{7})(1-\sqrt{7})$$

27.
$$\left(\sqrt{10} + 3\right)^2$$

28.
$$(3\sqrt{5}-2)(3\sqrt{5}+2)$$

29.
$$\frac{5}{2-\sqrt{3}}$$

30.
$$\frac{4-3\sqrt{7}}{1+2\sqrt{7}}$$

Lesson 6-4

Write each expression in simplest form. Assume that all variables are positive.

31.
$$81^{\frac{1}{2}}$$

32.
$$36^{\frac{1}{4}} \cdot 36^{\frac{1}{4}}$$

33.
$$\left(x^{-\frac{4}{3}}y^{\frac{3}{5}}\right)^{15}$$

34.
$$\left(x^{\frac{1}{4}}y^{-\frac{3}{8}}\right)^{16}$$

35.
$$(8x^{15}y-9)^{\frac{1}{3}}$$

36.
$$\left(-27x^{-9}y^6\right)^{\frac{1}{3}}$$

37.
$$\left(-32x^{-10}y^{15}\right)^{\frac{1}{5}}$$

38.
$$(32x^{20}y^{-10})^{\frac{1}{5}}$$

$$39. \left(\frac{81y^{16}}{16x^{12}}\right)^{\frac{1}{4}}$$

40.
$$\left(\frac{16x^{14}}{81y^{18}}\right)^{\frac{1}{2}}$$

41.
$$\sqrt{5} \cdot \sqrt[3]{5}$$

42.
$$\frac{\sqrt[6]{x^2}}{\sqrt[3]{x^5}}$$